
The convergence of the numerical solution of system (2.2) to an exact value degrades as 
the ratio of side crack length to main crack length decreases. Therefore in the limiting 
case as ~/l § 0 a numerical solution cannot be obtained directly. For a two-branch broken 
crack (Fig. 6, solid lines) and a three-branched crack (Fig~ 6, dashed lines) the values of 
Kij(~) were calculated by extrapolation from numericsl data obtained for ~/l = 0.01, 0.02. 

Similar functions Kij(a) were presented in [11]. In the case of the broken crack there 
is quite good agreement between the results obtained and the data of [11] (maximum relative 
deviation does not exceed 6%), with significantly greater differences for the branching 
crack. For this last case, [12] presents the dependence of stress intensity coefficients on 
angle ~ for ~i/~ = 0.I. We note that for such an ll/l value the intensity coefficients cal- 
culated by solution of Eq. (2.2) practically coincide with the data of [12]. 
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OPENING OF A NATURAL MACROCRACK 

A. P. Vladimirov and V. V. Struzhanov UDC 539. 375 

The shortcomings of the simplest models of macrocracks have been noted many times in 
the literature. Attempts to construct complete models reduce to selecting some hypothesis 
concerning the behavior of the medium at the tips of the crack [I, 2], but the process of 
formation of real macrocracks was not given the proper attention. 

A model of natural macrocracks, which takes into account ~he presence of residual com- 
pressive stresses arising at the tip of a crack as it is formed and opposing the opening up 
of the macrocrack, was proposed in [3, 4]. The purpose of this investigation is to provide 
experimental justification of the model proposed. 

1.To investigate the mechanisms involved in opening up of a natural macrocracks, we 
prepared a rectangular specimen consisting of SO-95 Plexiglas, to which we gave a matted 
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finish using an abrasive with an average particle size of 20 ~m. To increase the coefficient 
of reflection, we deposited aluminum on the surface of the specimen forming a film with 
thickness (5-10)-10 -~ mm. We formed a macrocrack by placing a precut specimen into a load- 
ing apparatus and gradually stretched it until a crack appeared; we then removed the load in 
order to stop the crack. Figure I shows the specimen and its dimensions; the origin of co- 
ordinates coincides with the tip of the crack. The part A of the specimen was clamped to the 
stationary clamp of the loading setup and part B was clamped to the movable clamp. 

We performed the experiment as follows. First we made a hologram of the specimen with 
zero load. Then, by moving the movable clamp, we deformed the specimen by an amount 0.39"10 -3 
and made a second hologram. The photographic plate was then replaced and the first exposure 
was made with a deformation of 0.39.10 -s and the second with a deformation of 0.77"10 -3 , etc. 
In this manner, we obtained from five to ten double-exposure holograms, bringing the deforma- 
tion of the specimen up to 0.7-0.8 of the deformation at which the crack opened up. 

The deformation was performed with a step of 0.39"10 -3 because an optimum spacing of bands 
for measurements was realized in this case and, in addition, for an initial deformation less 
than 0.39"10 -3 , the interference bands are continuous over the entire surface and therefore 
the sensitivity of the method in this experiment did not permit observing breakdown of the 
continuity of the medium under such deformations. 

To check the results, the experiment was performed on another specimen. The experiments 
on both specimens were repeated several times, i.e., several series of holograms were pre- 

pared for each specimen. 

We created the holograms in countermoving beams [5]. At the image reconstruction stage, 
we used the technique described in [6, 7], which permits separating and measuring any compo- 
nent of the displacement vector of points on the surface, namely, we photographed the pattern 
of interference bands through two optical systems, whose axes were situated in the x2Ox3 
plane and emanate from the Origin of coordinates forming angles B2 = 65 ~ and ~ = 115 ~ with 
the Ox2 axis, i.e., symmetrical relative to the Ox3 axis. Typical patterns of bands are 
shown in Fig. 2. Figure 2a corresponds to an angle of 65 ~ and Fig. 2b corresponds to 115 ~ 

The deformation of the specimen is 1.54.]0 -3 . 

We note that we obtained the same results for specimens without the aluminum deposited 
on them. A bright image is necessary for reliable quantitative investigations. 

2. Analysis of the holograms obtained showed that for deformations less than 0.77"10 -~ 
the crack opens up only partially and then it forms completely. To determine the width of 
the crack, we used one of the last series of holograms, obtained during the experiment. 

According to [7], we have 

Au~ = % ( A N  2 - -  AN~) / (2  cos ~2), ( 2 .  l ) 

272 



i[ i " I!I I I ' J 

L~ I i" j #pt 

i L,o ,o-3 
b n  / ' / ' ~ k  ~ / ' , - - - - - - ' - - - ~ " ' J ' l u  I 

i !///~', ~ / I  ~L....----~o,J/.Tu 
, ~ i _.~ �9 ! -3 

�9 I I ~ ,  , I  

AO 4 ~32 3 4 E 0"6" ~ , m m  

Fig. 3 

where Au2 is the projection of the displacement vector on the Ox2 axis; % is the wavelength 
of the laser radiation, equal to 0.633 ~m; AN2 and AN~ are determined along the crack from 
the band patterns obtained with the first and second optical systems, respectively, and in 
addition the transition from maximum illuminance to the neighboring minimum illuminance in 
the band pattern corresponds to a change of 0.5 in these quantities. 

For each side of the crack, we contructed two combined graphs of the dependences of AN2 
and AN~ on the coordinate xl. We connected the experimental points, i.e., the coordinates 
of the maxima and minima in illuminance, by continuous curves. We substituted the difference 
AN2 -- AN~ between two curves at a fixed point into Eq. (2.1). The points were chosen with a 
step 0.] mm. Subtracting from the displacements obtained the displacement of the crack as a 
whole, which we took as the displacement of its tip along the Ox2 axis, we obtained the values 
Avl and Av2 of the width of the crack corresponding to the right and left sides of the crack. 
The data obtained are presented in Fig. 3, where Av = (I/2)[Av~(xl) + Av2(xl)], 0A is the 
magnitude of the increment to the growth of the crack, OB is the length of the natural macro- 
crack, and BC is the length of the cutout. The deformation of the specimen corresponding to 
each curve is indicated. 

3. The incomplete opening of a natural macrocrack with small deformations is explained, 
evidently, by the fact that as the crack is formed, forces arise that oppose the separation 
of the sides of the crack. To determine the nature of these forces, we performed the follow- 
ing experiments. Nine specimens with cuts were prepared from the same Plexiglas. We placed 
each specimen into the loading apparatus and made the first hologram. We then formed a 
crack, after which we removed the load and made another hologram. We repeated this procedure 
many times, enlarging the crack each time by 1-2 mm. 

In all of the experiments, we obtained interference bands which showed a discontinuity 
in crossing the crack. In this manner, the residual displacements, which are in fact the 
reason for the appearance of the experimentally observed bands, are not continuous and for 
this reason the material studied is not continuous. It follows from here that after the for- 
mation of the natural macrocrack and subsequent removal of the load, the atomic interaction 
forces do not reappear since the sensitivity of the method is such that if an interaction 
arose between atoms situated on opposite sides of the crack, then it would have been impos- 
sible to observe the breakdown in continuity, namely the discontinuity in the displacements. 

Further investigation of the band patterns shows that the bands are distributed nonuni- 
formly over the surface of the Specimen. They are observed to concentrate near the tip of 
the crack, in the so-called loosening zone, i.e., the field of residual displacements and, 
therefore, the field of residual deformations is not uniform. 

The appearance of nonuniform residual deformations is caused by the fact that deforma- 
tions arising in the body during the process of formation of macrocracks, initially, do not 
satisfy the conditions of compatibility due to the different degree of deformation of the 
material in the loosening zone and in the undamaged region. The material situated in the 
loosening zone strives to occupy a large volume, while the undamaged material surrounding it 
opposes this. As a result, compressive self-balanced stresses appear in the body, which we 
shall call induced'stresses and which oppose the opening up of the crack, appearing as a 
unique reaction of the material to the fracture. 

The presence of induced stresses, opposing the opening of the crack, is likewise con- 
firmed by the fact that the results obtained above could not be reproduced on a specimen 
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with a natural crack, which lay for about a year under room conditions. Under the same con- 
ditions as in the experiment, the crack opened up with deformations much smaller than 0.39. 
10 -3 . This fact is evidently explained by the relaxation of induced stresses. 

We note in conclusion that for small deformations, a natural macrocrack does not open up 
completely, opening up of the crack is opposed by the compressive induced stresses, and since 
a loosening zone evidently accompanies the formation of a natural crack in any material, the 
results of the present work are apparently also valid for a wider class of materials. 
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EXISTENCE OF SOLUTIONS IN DYNAMICS PROBLEMS OF 

ONE-DIMENSIONAL PLASTIC STRUCTURES 

A. M. Khludnev UDC 539.214+539. 374+517.9 

The distinctive feature in the formulations of elastic--plastic and rigid--plastic prob- 
lems is the presence of an inequality connecting the plastic strain rate and the magnitude 
of the running stresses. This inequality, called the Mises maximum principle, includes r 
plastic strain rate components (r depends on the dimensionality of the problem), where it is 
arranged so that it actually replaces r equations and the system of governing relationships 
is hence closed. Therefore, it turns out that upon the assignment of initial and boundary 
conditions, the rates and stresses are determined at each point, and moreover uniquely. Let 
us note that a corollary of the mentioned inequality that describes the proportionality be- 
tween the plastic strain component and the components of the flow surface gradient is often 
used in finding the approximate solutions (by a numerical or analytic method). As a rule, 
this results in openness of the system of equations. In this sense the utilization of the 
maximum principle in its initial form is more preferable despite the fact that the inequality 
itself is a corollary of the more general Drucker postulate. In particular, formulation of 
the problem by using the inequality was examined in [I], which permitted setting up the sol- 
vability of the three-dimensional dynamic elastics-plastic problem. 

Generalized stresses (forces, moments, etc.) and strain rates of the middle surface take 
part in the formulation of elastic--plastic and rigid-plastic problems for thin-walled struc- 
tures of the shell, plate, and beam type. They are also interrelated by using inequalities 
[2, 3]. Definite progress has been achieved in the investigation of problems of this kind 
from the viewpoint of an approximate description of the strain processes. This concerns the 
case of one space Variable especially (see the survey [4]). However, despite the large number 
of papers on this topic, in practice there are no results referring to the investigation of 
the correctness in the formulations of such problems. Boundary-value problems for one- 
dimensional elastic-plastic and rigid--plastic structures are considered in this paper, and 
results on solvability are formulated. 
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